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Abstract

Magnetic resonance techniques proved numerous times in the past to
be a powerful tool in the investigation of the microscopic structure of
the superconductors. NMR measurements of the superconducting state
were the first to observe the divergences in the density of states on the
edge of the energy gap, which is one of the main results of the BCS
theory. Furthermore, NMR together with the ultrasound absorption mea-
surements provided the first experimental prove for the existence of the
Cooper pairs. After the discovery of the high-temperature superconduc-
tors NMR measurements still played a major role in the investigation of
the microscopic superconductor structure, allowing for the determination
of the wave-vector dependence of the energy gap, different pairing states
and the effect of the strong electron-electron interaction, especially in the
high-Tc superconductors.

1 Introduction

Superconductivity is today already widely used in many superconducting de-
vices, namely high-field magnets, SQUID magnetometers, mass spectrometers
and beam steering magnets in the particle accelerators [1]. Despite their wide
use the theory of high-temperature superconductivity is still not entirely devel-
oped. Superconductivity was discovered in the 1911 by Kamerlingh Onnes, while
studying the electrical resistivity of the mercury at the liquid helium tempera-
tures. He observed that below critical temperature (Tc) the electrical resistivity
of the material suddenly dropped to zero, within the experimental accuracy.
Later it was found that the resistivity of the superconductors is absolute zero,
meaning that the current in the insulated superconductor will flow indefinitely.
Soon after the discovery of absolute zero resistivity, more non-intuitive phe-
nomena were discovered in superconductors. Meissner and Ochsenfeld (1933)
observed that applied magnetic field is expelled from the superconductor, which
is now called the Meissner effect. Fritz London (1948) pointed out that the
magnetic flux, surrounded by the superconducting material, is quantized and
Josephson (1962) realized that in superconductors the interference effects span
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to macroscopic distances [2]. Phenomena associated with the superconductivity
caught the attention of many scientists, at that time and even today, since these
effects manifest the quantum effects on a macroscopic scale.

Even-thought several superconducting properties had been known for long
time it took almost 40 years after the discovery of the superconductivity that the
first successful microscopic theory was developed by Bardeen, Cooper and Schri-
effer, today known as the BCS theory. Their theory at that time explained all the
non-intuitive superconducting phenomena and correctly predicted the results of
many experimental investigations. The theory was thought to be a triumph of
the superconductivity for many years up until the high-temperature supercon-
ductors were discovered in 1986 by Bednorz and Müller [3]. Although BCS the-
ory failed to explain the experimental data measured on the high-temperature
superconductors it provided a vital theoretical background for the future theo-
ries. The discovery of the high-temperature superconductors in addition opened
up a new challenge of finding the room-temperature superconductors, which
would have a mayor technological impact.

Throughout the course of the discovery of superconductivity magnetic reso-
nance played a mayor role. Nulcear magnetic resonance (NMR), in particular,
turned out to be a great local probe by providing the detailed microscopic mag-
netic picture of the superconductors. In order to understand the physics of mag-
netic resonance in superconducting state first the theory of magnetic resonance
is needed for metal in the normal state. The first such theoretical approach
was given even before the discovery of the NMR by Heitler and Teller [4] when
they studied the possibility of cooling the sample using nuclear magnetic mo-
ments of the metal by adiabatic demagnetization. Later a complete theory of
nuclear relaxation in metals was developed by Korringa [5], allowing thorough
investigations of the superconductivity using magnetic resonance. And indeed,
nuclear magnetic resonance turned out to be an indispensable tool for studying
superconductivity, for instance it was the first to observe the divergences in the
density of states (DOS) later explained by the BCS theory and by a combina-
tion with the ultrasound absorption it gave the first prove for the existence of
the Cooper pairs [6]. With the high-temperature superconductors and lately
discovered new families the NMR is still widely used [7], although the complete
theory of high-temperature superconductivity is not yet known. Enriched by
the BCS theory, the NMR measurements on high-temperature superconductors
provide the determination of the DOS near Fermi level, electron pairing state,
effect of the electron-electron correlations and more [6].

2 Normal metals

In magnetic resonance techniques studied sample is typically inserted into a
strong applied magnetic field (max 9.4 T at IJS) where magnetic moments be-
come polarized along the magnetic field direction. A strong pulsed electromag-
netic signal (RF band, up to 400 MHz, in our NMR) is introduced perpendicular
to the polarization direction, which rotates the magnetic moments away from
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the main static magnetic field direction. The nuclear magnetic moments start
to precess in the magnetic field, after RF pulses are switched of. The preces-
sion frequency in principle depends on the size of the magnetic moments and
the external applied field (ω0 = γB0). Here gamma is the gyromagnetic ratio
and is related to the nuclear magnetic moment through relation µ = γ~I. γ
depends on the type of the nucleus. The variation of the measured precession
frequency of a given nucleus in specific environment from ω0 reflects the presence
of internal magnetic fields, also called the shift on the resonance line. Due to
the spin-lattice interaction the precessing magnetic moments loose energy and
in a characteristic time T1 return to the initial (thermal equilibrium) direction
along the external magnetic field. The frequency shift from ω0 and the T1 re-
laxation time are typically measured quantities in NMR experiments which give
information about the local structural and electronic properties.

In 1947, Knight [8] discovered in metals a characteristic resonance frequency
shift (K = ω−ω0

ω0
), called the Knight shift. The shift comes from the hy-

perfine interaction between the nuclei and conducting electrons. The elec-
tron in the s-orbitals, where the probability of electrons being on the nucleus
site is non-zero, interacts with the nucleus with the Fermi contact interaction
V ∝ 〈µn · µe〉Ψ2(0). Were µn and µe are the nuclear and electron magnetic
moments. The electron magnetic moment can be in an approximation replaced
by the average electron magnetic moment, which is in metals proportional to
the conducting electron spin susceptibility χs (or Pauli susceptibility),

H = µn ·H +Aµn · 〈µe〉 = µn ·H +Aµn · χsH = (1 +K)µn ·H.

Thus, K = A ·χs directly measures local spin susceptibility. Pauli susceptibility
is further proportional to the density of states at Fermi energy [9]. The Knight
shift therefore depends on the density of states at Fermi energy,

K ∝ χs ∝ ρ (EF ) .

In metals DOS does not change considerably with temperature. A constant
Knight shift over a large temperature interval therefore provides an indication
for a metallic state.

Three years later Korringa [5] calculated the NMR relaxation rate for a
simple metals, which related the Knight shift with the T1. The formula is now
called the Korringa relation,

T1TK2 =
γ2

e

γ2
n

~
4πkB

KP (1)

were γe and γn are electron end nuclear gyromagnetic ration, K is the Knight
shift and kB is the Boltzmann constant. This relation was verified and studied
extensively by the experiments particularly on the alkali metals [10]. It was
soon found [11] that Korringa relation does not hold exactly when electron-
electron interactions are important. The formula can be corrected by adding a
constant factor, KP to the right hand side of the relation, which is less than
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one for anti-ferromagnetic electron-electron correlations and is more than one
for the ferromagnetic correlations. It is interesting to note that in the case of no
electron-electron interactions the left hand side of the Korringa relation (Eq. 1)
depends only on the fundamental constants, i.e. KP = 1, and it does not depend
on the material in which the nuclei reside.

If the Knight shift is temperature independent, which is typical for metals,
the Korringa relation can be rewritten as

1
T1
∝ T

which is also known as the Heitler-Teller equation. This equation can be easily
derived by realizing that the nuclear relaxation in metal may be viewed as a scat-
tering process, where electrons are scattered by the nuclear magnetic moments,
flipping the nuclear spin in the process. Considering electron-nuclear interaction
to be hyperfine, scattering can be imagined as when the electron comes close
to the nucleus both their spins precess around the resultant total spin angular
momentum vector, leaving the scattering process both with changed spin orien-
tation. If we treat the electrons as free electron gas and the hyperfine interaction
as Fermi contact interaction (V (r) = 8π/3γeγn~2δ(r)), where scattering is inde-
pendent of the direction of the electron velocity, a simple quantum mechanical
theory of the T1 can be derived. Let us assume that after the scattering the
nuclear spin and electron spin are changed as well as electron wave vector is
changed from k to k ’. The scattering can be derived using the Fermi’s Golden
Rule: the probability per second of a transition of an electron from the initial
state i to the final state f is

Wif =
2π
~

∣∣∣〈i ∣∣∣V̂ ∣∣∣ f〉∣∣∣2 δ(Ef − Ei −∆E)

where V̂ is the hyperfine coupling energy operator and ∆E is the change in the
nuclear spin Zeeman energy. In order the transition can take place the initial
state must be occupied and the final state must be empty. We sum over all initial
states weighted by the probability for the occupied states (F (Ei)) and over all
final states weighted by the probability for the unoccupied states (1− F (Ef )).
The sums can be replaced by the integrals, denoting the number of states within
dE at energy E as ρ(E)dE. Assuming the ∆E is much smaller than the thermal
energy, kBT , the energy difference can be neglected and the probability for the
transition can be written as

W =
2π
~

ˆ ∣∣∣〈i ∣∣∣V̂ ∣∣∣ f〉∣∣∣2 F (Ei) (1− F (Ei)) ρ (Ei)
2 dEi. (2)

At low temperatures the term F (Ei) (1− F (Ei)) can be approximated by the
delta function. In the limit where changes of

∣∣∣〈i ∣∣∣V̂ ∣∣∣ f〉∣∣∣ and ρ (Ei) can be
neglected over the energies comparable to kBT we can come to the final from,

1
T1

= W =
2π
~

∣∣∣〈i ∣∣∣V̂ ∣∣∣ f〉∣∣∣2
EF

ρ (EF )2 kBT (3)
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where subscript EF means evaluation at Fermi energy. The linear dependence
comes from the fact that electrons within about kBT of the Fermi surface are
scattered by the nuclear magnetic moment, which is only a fraction of the total
number of electrons of the order of (kBT/EF ).

3 Superconductivity

3.1 Type I and type II superconductors

There are two types of superconductors characterized by the two distinct lengths.
The magnetic field penetration length λ, a typical length that magnetic field pen-
etrates the SC state, and correlation length ξ, sometimes called also Cooper-pair
length. The former can be easily obtained using the second London equation
[12] (∇× js = −nse2

mc B) and the Ampere’s law (∇×B = 4πj/c) yielding,

∇2B =
1
λ2

B λ =

√
mc2

4πnse2
,

where m is electron mass, ns density of superconducting electrons and e electron
charge. λ is a characteristic length of a layer of normal state surrounding the
superconducting state for a superconductor in an external magnetic field, where
magnetic field is not entirely expelled by the Meissner effect. The energy gain
of having magnetic field in this region is ∝ λ2H2 per unit volume.

The concept of the correlation length was first introduced by Ginzburg and
Landau [13] where correlation length is described as a stiffness of the supercon-
ducting wave function. Later Pippard [14] who was doing experiments on mi-
crowave electrical conductivity gave the name correlation length and estimated
its value from the uncertainty principle to,

ξ =
a~vF

kBTc
.

Here a is a constant of the order of unity, vF the velocity of electrons at the
Fermi energy and Tc the superconducting transition temperature. The energy
gain of having a superconducting state is consequently ∝ ξ2H2

c per unit volume,
which can be seen also as a bounding energy of Cooper pairs.

In conventional superconductors penetration depth (typical 100 nm) is much
shorter than the correlation rate (λ/ξ � 1). Comparing the energy scales of
the normal and superconducting state, one sees that when B < Bc normal state
is expelled by superconducting state and when B > Bc the superconducting
state is destroyed. Such materials were later named type I superconductors.
Abrikosov (1957) [15] showed, that for a case when λ > ξ the situation is
drastically different. When B < Bc like in type I superconductors normal state
is expelled by the superconducting state, however when B > Bc1 = (ξ/λ)Bc

the superconducting state is considering above energy estimations energetically
not favorable. By noticing the energy contribution of the interface between the
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two states, a normal state filaments, also called vortexes, are formed in this
range (see Fig. 1). With the increase of the magnetic field the density of the
vortexes is increased up until the vortex separation is of the order of correlation
length. Higher magnetic fields cross the border of Bc where superconductivity
is destroyed and only normal state remains. Such superconducting materials
are called type II superconductors.

NMR measurements on the type I superconductors are possible on thin films
or fine particle samples where at least one dimension is smaller than λ. Another
possibility is to use pulsed high magnetic fields (B > Bc), during which the
magnetic moments in the normal state get polarized and measured in the sub-
sequent pulse, but the relaxation happens in the superconducting state between
the pulses, where B < Bc. Type II superconductors present no such challenge
since in the mid range Bc1 < B < Bc material consists of both the supercon-
ducting and the normal state regions. The nuclear moments get polarized in
the normal state filaments and are relaxed by superconducting electrons in close
proximity in superconducting state or by the on-site superconducting electrons
when the filament is moved away. The nuclear moments are relaxed also by the
normal state electrons, however this can be subtracted since the relaxation in
metals is known from the Korringa relation. The typical values for critical fields
for the type II superconductors are Hc1 = 40 mT and Hc = 30 T (in Nb3Sn) [2].

3.1.1 Fluxuid lattice

The magnetic flux lines in type II superconductors form a lattice. It was long
debated weather the flux lattice is square or triangular, until it was experimen-
tally determined using NMR [16] that the flux lattice is triangular. The NMR
lineshape is strongly dependent on the surrounding magnetic field distribution,
which is observed through the NMR spectrum. A comparison between the cal-
culated triangular and square vortex lattice NMR spectra is depicted in Fig. 1a.
The NMR spectrum directly measures the local magnetic field distribution felt
by nuclei, which are in this case equally distributed over the vortex structure.
The so-called Redfield distribution comes from different magnetic fields between
vortex centers, where magnetic field is maximal (points V in Fig. 1a) and points
in-between vortexes (points C), where magnetic field is minimal. There is also a
third characteristic point - a saddle point in magnetic field (points S), where dis-
tributions diverges. The position of this point differs for triangular and square
lattices in the magnetic field distribution, thus allowing the determination of the
vortex lattice symmetry. However, direct picture of the flux lines cannot be ob-
tained by the NMR method. For this purpose scanning microscopic techniques
are more frequently used (Fig. 1b).

Since flux lines are filament-like areas of non-superconducting state a stan-
dard Korringa relation should hold for the nuclear relaxation. Contribution to
the relaxation rate in type II superconductors should therefore be of the order
of (1/T1)Korringa · nπξ2 , where n is the density of the flux lines per unit area,
n = B/φ0 and discrete flux unit φ0 = h c/2e passing through a flux filament.
These contribution was indeed experimentally observed [19] and yielded a rea-
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Figure 1: (a) Calculated NMR spectrum of triangular and square vortex lattice.
Point V corresponds to the large magnetic field inside vortexes, point C corre-
sponds to magnetic field between the vortexes and point S corresponds to the
magnetic field saddle points [18]. (b) STM image of a triangular vortex lattice
[17].

sonable value for ξ. A precise value of ξ cannot be obtained since there is no
quantitative theory so far, which would hold for such systems.

3.2 Bardeen-Cooper-Schrieffer Theory

3.2.1 Energy Gap

Energy gap ∆ is perhaps one of the most important parameters characterizing
superconducting state. In order to break Cooper pairs and create excitation
energy of at least 2∆ is required. The energy gap in superconductivity was first
introduced by John Bardeen (1954) who at that time developed a simple model
that he believed will give the Meissner effect and thus explain superconductivity.
In his model a gap in the density of states appears right at the Fermi energy as
soon as material becomes superconducting (Fig. 2b). He argued that the energy
gap should be approximately kBTc.

The idea of energy gap at the Fermi energy motivated C.P. Slichter to mea-
sure T1 in the superconducting state [6] since according to Korringa relation
(Eq. 3) T1 in metals strongly depends on the density of states at the Fermi
level. Slichter together with Hebel succeeded to measure T1 in the supercon-
ducting state of aluminium almost five years later [20]. Since at that time only
type I superconductors were known, they used the pulsed high magnetic field
technique on Al (Fig. 3), which was known to have a long relaxation time com-
pared to other metals. In these experiments the relaxation time needed to be
significantly longer than the high magnetic field pulse repetition time, otherwise
all magnetic moments would be realigned to the initial position already in the
normal state before the measuring pulse would occur. Another serious problem
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(a) (b)

(c)

Figure 2: Density if states for normal metal (a), for Bardeen model (b) and the
BCS model (c).

that they faced was the low Tc of aluminum (1.172 K). Using liquid He one can
cool down to 4.2 K (He boiling point) and by decreasing the pressure a tem-
perature of 1.2 K can be reached. Cooling below this point is prevented by an
effect called Rollin film typical for superfluid 4He, however using triple Dewar
system they succeeded in reaching 0.9 K [6].

The results of their T1 measurements are depicted on Fig. 4. Following
the simple model density of states proposed by Bardeen (Fig. 2b) for the su-
perconducting state one would expect 1/T1 to drop below Tc according to
exp (−2∆/kBT ). However, much to their surprise Hebel and Slichter noticed
that 1/T1 in the superconducting state at first unexpectedly increases and later
decreases following exp (−2∆/kBT ). The peak in the 1/T1 temperature depen-
dence below Tc is now called the Hebel-Slichter peak. When examining their data
Hebel and Slichter thought of one possible explanation. Since 1/T1 depends on
the density of states the peak could be a consequence of the increase of density
near the gap edges. The BCS theory later showed an analogous shape of the
density of states as suggested by Hebel and Slichter (Fig. 2c).

Some of the superconducting materials do not exhibit energy gap [21]. These
are typically materials with magnetic impurities, which effectively reduce the life
time of quasi-particles. Finite quasi-particle lifetime leads to the smearing of the
energy. It is surprising that even without energy gap these materials have zero
resistivity in the superconducting state. Strictly speaking, all superconducting
materials are gap-less, since BCS theory is only an idealization and in reality
all excitations have finite lifetimes and therefore finite density of states at zero
energy. Density of state is many orders of magnitude smaller than in normal
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Figure 3: Hebel-Slichter field cycling experiment [6].

Figure 4: Relaxation rate in superconducting state, normalized by the value at
Tc [20].
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state, where in the gap-less SC it is of the same order. An example of gap-less
superconductors are type II superconductors near Tc. It was observed experi-
mentally that at higher magnetic fields T1 no longer gets smaller just below Tc

but instead gets longer.
There are several methods of measuring the energy gap in superconductors

besides NMR, however NMR measurements prove to be simple, easy and reli-
able. For example, when energy gap is measured by specific heat measurements
small impurity phases, typically non-SC, cause large errors, but they hardly
contribute to the T1 relaxation at longer times. Energy gap can be measured
also using electron tunneling microscope. Unfortunately the measurements are
accurate only in pure materials, where coherent length is long. Measurements
on materials with much impurities, yield information about the surface rather
than about the bulk [22]. The drawback of the NMR T1 method is it’s depen-
dence on the magnetic field, which can destroy the SC state if to high. For this
reason measurements on type I superconductors are often conducted in a pulsed
magnetic field and measurements on type II superconductors in lower magnetic
fields.

3.2.2 Cooper pairs

After the discovery of the isotope effect on the superconducting transition tem-
perature (Tc) Bardeen and Pines started to investigate the electron-phonon in-
teraction and the interaction of the two electrons mediated by the lattice dis-
tortion [23]. However, it was Cooper, the Bardeen’s post doctoral associate,
who made an important discovery. He considered two electrons with energies
above filled Fermi level to have an attraction interaction and found that such
electrons would form a bound state (k, spin ↑; -k, spin ↓). These so-called
Cooper pairs were the key to understanding the lifting of degeneracy in met-
als and consequently the formation of the energy gap. The complete theory of
superconductivity required to include all electrons, not just one pair above the
Fermi surface. The problem was solved by Schrieffer who found out that the
wave function of superconducting state is made up entirely of Cooper pairs in
which each pair state was occupied fractionally [6]. Employing the Schrieffer’s
wave function, Bardeen, Cooper and Schrieffer solved the Hamiltonian, first at
zero temperature and then soon extended the analysis to temperatures up to
transition temperature. They found that the energy gap varies with temper-
ature and vanishes at Tc, when the transition to normal state occurs. They
derived the relation between energy gap and Tc for weak coupling between the
electrons to be

2∆(0 K) ≈ 3.52 kBTc, (4)

where 2∆ is the difference between the upper and the lower gap edges. They were
able to calculate the results of many experiments with great accuracy including
the Hebel-Slichter peak and the 1/T1 dependence at lower temperatures,

1/T1 ∝ exp (−∆(T )/kBT ) . (5)
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One of the greatest mysteries concerning the conventional superconductivity
was that the measurements of ultrasound absorption in the superconducting
state do not exhibit the Hebel-Slichter peak just below Tc even-though the
scattering mechanism is the same as in the NMR T1 relaxation and the same
arguments that we used to derive Eq. 3 should hold. The only difference is
that in ultrasound absorption the superconducting electrons are scattered on
the phonons, which change only the superconducting electron’s wave vectors,
whereas in NMR SC electrons are scattered on the nuclear moments, where
also a flipping of the superconducting electron’s spin occurs. One of the great
triumphs of the BCS theory was to explain this difference. The explanation
is considered to be one of the best proofs for the pairing mechanism. To give
a short explanation let us consider Eq. 2. The difference between the sound
absorption and nuclear relaxation is the spin flipping in the later case and since
Cooper pairs consist of two electrons, one with k and spin up and other with −k
and spin down, there are two matrix elements that join any initial state to the
same final state. Denoting these as V̂1 and V̂2 we should replace V̂ in Eq. 2 with
(V̂1+V̂2) for NMR and (V̂1-V̂2) for ultrasound. The density of states according
to the BCS theory is [6]

ρs(E) =
ρn(E)

√
E

E2 −∆2
,

where ρn is the density of states in normal metals. We see that when E = ±∆
density of states diverges as predicted by Hebel and Slichter. The square of the
matrix element for the ultrasound between states at E and E′ goes as EE′−∆2,
whereas for the NMR the square of the matrix element goes as EE′+ ∆2. This
correction is called coherence factor. We can now see that in the case of the
ultrasound absorption singularity in density of states cancels out by the matrix
elements and thus no peak is observed. On the other hand, the singularity
remains in the nuclear relaxation which results in the Hebel-Slichter peak.

In the BCS theory the superconductivity is explained by the effect that the
lattice phonons have on the electron-electron interaction. The energy gap pa-
rameter ∆k in the BCS theory is the solution of an integral equation and is in
general a function of wave-vector. However, BCS approximated the energy gap
parameter to a scalar value ∆0 for electrons in some cutoff region around Fermi
level and set to zero outside this region. In BCS energy gap is independent on
the wave-vector. The theory is, on the other hand, more general. Depending
on the electron-electron interaction, other pairings are possible. In a situation
of zero electrical current flow, the electron momentum is zero, however electron
pairs can have a non-zero angular momentum about their mass centers with
quantum numbers L = 0, 1, 2, etc. Due to the Pauli exclusion principle the
total wave function has to be antisymmetric for the electron exchange, allowing
only two spin quantum numbers: S = 0 for even L and S = 1 for odd L. The
possible BCS states therefore are the standard BCS state (L = 0, S = 0) called
the s-wave superconducting state and higher unconventional states: p-wave su-
perconducting state (L = 1, S = 1), d-wave pairing state (L = 2, S = 0),
etc. For example, d-wave pairing state is believed to be the case in cuprates,
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Figure 5: s-wave, p-wave and d-wave symmetries.

the high-Tc superconductors. After solving the Hamiltonian with given pairing
states the energy gap turns out to be isotropic in k-space in the s-wave super-
conductors and anisotropic in p- and d-wave superconductors with a specific k
dependence (see Fig. 5). The pairing symmetry can be in fact directly measured
using certain tunneling experiments [24] or by a typical power-law dependence
of 1/T1 below Tc.

4 Alkali Doped Fullerides

Soon after the discovery of C60 molecule it was found that triply doped fullerides
with the alkali metals (A3C60) exhibit type II superconductivity [25] with re-
markably high Tc’s, for example 19.5 K for K3C60, 29.5 K for Rb3C60 and 31 K
for Rb2CsC60. To some extend this is expected since large molecules have many
phonon modes which are required for the conventional BCS superconductivity.
For this reason structural, electronic and superconducting properties of fulleride
superconductors have been extensively studied over the last couple of decades
[26]. Fulleride superconductors also show another striking feature, namely the
superconducting transition temperature is scaled with the inter-fulleride sepa-
ration (Fig. 6a). This is easily explained within the framework of BCS theory,
where for non-interacted electrons critical temperature is given by [26]

kBTc = 1.13~ωph exp
(
− 1
N(EF )V

)
. (6)

Where ωph is Debuy frequency, V electron-phonon interaction matrix element
and N(EF ) density of states at Fermi energy. By increasing of the inter-fulleride
distance, either by doping with larger anions or by the reduction of applied pres-
sure, results in the smaller overlap of the electron orbitals between the neigh-
boring C−3

60 anions. Reduced overlap results in a smaller band width and conse-
quently yields higher density of states, which according to the Eq. 6 increases Tc.
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(a) (b)

Figure 6: (a) Tc dependence on the lattice size [26]. (b) A3C60 crystal structure.

Following this feature Tc seems to increase indefinitely with increasing lattice
parameters. However, at some large unit cell volume, where on-site Coulomb re-
pulsion becomes relevant this prediction is expected to break-down. It has been
experimentally realized only very recently in hyper-expanded fulleride Cs3C60

where a non-superconducting and an antiferromagnetic insulating state at ambi-
ent conditions have been observed [7]. It’s phase diagram is remarkably similar
to that of other high-Tc superconductors and signals that in expanded lattices
electron-electron correlations play an important role. In this section we will
focus only on the non-hyperexpanded alkali doped fullerides, such as K3C60 and
Rb3C60.

The NMR T1 measurements on a typical alkali doped fulleride (Rb3C60) are
shown in Fig. 7a. In the normal state (above 30 K) 1/(T1T ) slightly increases
with increasing temperature and is temperature independent above ∼ 150 K.
This is reminiscent to simple metals where due to the Korringa relation 1/(T1T )
should be constant. Similar results were observed also in other A3C60 super-
conductors [27, 28], but not in Cs3C60 [29]. In the superconducting state 1/T1

drops exponentially with decreasing temperature as expected for the creation
of the energy gap. The fit to the low temperature T1 measurement (Fig. 7b) is
in a reasonable agreement with the BCS-derived formula for 1/T1 (Eq. 5). The
fit to the measurements on K3C60 and Rb3C60 yield the quotient 2∆/kBT

NMR
c

of 3.0 and 4.1, respectively. This is in a rough agreement with the calculated
BCS value (3.5; see Eq. 4), showing that the discussed alkali doped fullerides
are conventional s-wave superconductors. One can see that the measurements
show no Hebe-Slichter peak near Tc. It was known from the studies of V3Sb
[30] that a static magnetic field (typical for type II SC) may suppress the co-
herence peak. Experiments in lower magnetic fields (including zero-field muon
spin relaxation measurements) indeed observed the recovery of Hebel-Slichter
peak below certain applied field [28].

The Knight shift is also a valuable quantity that provide much information
regarding the magnetism of the sample. The electrons in S = 0 singlet state
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(c)

Figure 7: (a) NMR 1/T1T measurements on Rb3C60. (b) Inverse Tempera-
ture dependence of T1 in log scale shows a good agreement with BCS s-wave
superconductivity. (c) Electron spin susceptibility from the Knight shift and
theoretical lines for different 2∆/kBTc quotients. [6]

cannot interact with an applied magnetic field nor with the nuclear moment,
measured in NMR. Consequently the Knight shift should vanish in the supercon-
ducting state at T = 0. This holds only for s- and d-wave superconductors with
a zero spin quantum number, S. However, in type II superconductors, Meiss-
ner diamagnetism may overshadow the vanishing χs thus making the analysis
ambiguous. In fact, measured Knight shift seldomly vanished due to, for exam-
ple, the remaining magnetic field present in the type II superconductors. The
problem can be bypassed by subtracting the Knight shifts of two species in the
compound, (e. g. 13C and 87K in K3C60), influenced by the same remaining
magnetic field, i.e. diamagnetism is the same for both nuclei. Normalized spin
susceptibilities obtained by a subtraction of the Knight shifts for different nuclei
are depicted in Fig. 7c. In this method Stenger found the best agreements be-
tween calculated values and measured data when the weak-coupling BCS value
is 2∆/kBT

NMR
c = 3.52, which was another evidence that A3C60 are conventional

s-wave superconductors.

5 Cuprate Superconductors

As a contrast to the conventional superconductors the high-Tc cuprate super-
conductors (type II) will be presented in this section. Discovered in 1986 by
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Figure 8: (a) Phase diagram and (b) crystal structure of La2−xSrxCuO4[6]

Bednorz and Müller [3] their superconductivity is still not entirely understood.
There are several features that distinguish them from the conventional SC, the
high transition temperature (current record: Tc = 135 K in HgBa2Ca2Cu3Ox)
[1], antiferromagnetic insulator ground state of parent compounds and a layered
- largely anisotropic structure (Fig. 8a-b). In cuprates superconductivity arises
for example after the doping with strontium atoms in La2−xSrxCuO4, where
x denotes the amount of dopand. The facts that the parent compound (un-
doped compound) is an antiferromagnet at low temperatures and an insulator
despite the half-empty conduction band, highlights the immense importance of
the electron-electron interaction in cuprates.

From the early NMR measurements it became soon apparent that the normal
state of the cuprate superconductors is no ordinary metal. For example, the
Knight shift is temperature independent in metals, wheres it is almost a linear
function of temperature in cuprates (Fig. 9a). Moreover, the 1/T1 is a linear
function of temperature in metals, compared to the cuprates where it saturates
at a certain temperature and remains constant above this temperature (Fig. 9b).
Another unexpected feature is linear dependence of T1T and the up turn at low
temperatures as seen in Fig. 9c, which is a signature of phenomenon called the
pseudo gap. Here nuclear moments are relaxed by coupled electrons that form
a singlet-triplet state. In the singlet ground state electrons do not couple to
the nucleus, whereas in the triplet state they do. At temperatures lower than
singlet-triplet splitting (still above Tc) electron pairs will preferentially be in the
ground singlet state and thus nuclear moments will not be relaxed, leading to
an upturn in T1T data.

In the superconducting state the Knight shift decreases with temperature
(Fig. 9a) indicating the singlet ground state. The 1/T1 does not drop to zero
exponentially, as expected for conventional superconductors, but rather seems
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(c)

Figure 9: (a) 63Cu Knight shift in the direction perpendicular to the crystal c
axis. (b) 63Cu spin lattice relaxation rate. (c) T1T as a function of temperature.
[31]

to fit the power law at low temperatures (Fig. 10a)

1/T1 ∝ T 3.

In Fig. 10b T1(Tc)/T1(T ) is plotted against Tc/T in log-scale, which reflects
the temperature dependence of the energy gap. It can be seen that data of
cuprates do not follow the BCS s-wave line. The slope of the data contin-
uously change with temperature, getting smaller with temperature. At high
temperatures there are excitations in a broad k-space interval, whereas at low
temperatures the excitations are only in a small interval where the energy gap
is smaller. This would indicate that in cuprates the energy gap is strongly
anisotropic and depends on the wave-vector, in a contrast to the conventional
BCS superconductors. The pairing state in cuprates is therefore not an s-wave,
but must be higher, p- or d-wave state. However, the Knight shift measurements
show a spin singlet ground state, ruling out the p-pairing state (L = 1, S = 1).
The most likely symmetry of the Cooper pairs in the cuprate superconductors
is therefore the d-wave symmetry, which is now generally accepted. The NMR
gave one of the earliest evidence for the existence of d-state pairing [6].
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Figure 10: (a) Temperature dependence of the 63Cu relaxation rate in the log-log
scale [32]. (b) Normalized relaxation rate as a function of normalized reciprocal
temperature [33].

6 Conclusions

The complete understanding of the superconductivity is vital since the effect
has a large technological potential. The nuclear magnetic resonance was one
of the first techniques used for the investigation of superconductivity since it
provides a unique insight into a local magnetic structure in the vicinity of the
observed nucleus. It played an essential role in the experimental confirmation
of the existence of the energy gap and the Cooper pairs - central objects of the
BCS theory. With the discovery of the high temperature superconductors the
magnetic resonance techniques offered valuable experimental evidences of, for
example, the superconducting electron pairing state and the effect of electron-
electron correlations. These techniques are still widely used on the new dis-
covered superconductor families like alkali doped fullerens, iron-pnictides, with
an aim of providing enough experimental data to help the development of the
complete theory of superconductivity.
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